Problem 6Semiconductor DevicesSpring 2015Page 1 of 1

The standard model for an *n*-channel insulating gate field effect transistor is based on the simple **gradual channel approximation (GCA)**. In a steady state, let's say that the source is grounded, the drain is held at V_d , and the gate at V_g . This type of model yields for the output characteristics the familiar result:

$$J_{d} = \frac{\mu C}{L} [(V_{g} - V_{T})V_{d} - \frac{V_{d}^{2}}{2}] \quad \text{for} \quad 0 \le V_{d} \le V_{g} - V_{T}$$

Here J_d is the lineal drain current density (drain current per unit channel width), μ is the electron mobility, L is the channel length, and C is the gate capacitance per unit area.

Based on the simple GCA that yields the result above, determine the channel potential, V(x), for $0 \le x \le L$, where x = 0 corresponds to the source, V(0) = 0, and x = L to the drain, $V(L) = V_d$. Also determine the electric field in the channel parallel to the direction of the current, $F_x(x)$. (Your functions V(x) and $F_x(x)$ should depend parametrically only on V_d , V_g , and V_T).

Hints: Electron diffusion is to be neglected. Make sure that your solution satisfies the boundary conditions.